
Different companies use different technical procedures for preparing PEO. WSR-301 PEO 
is synthesized in the form of structural units, i.e., even in the dry state, this polymer 
has a complex aggregation of individual macromolecules in groups. This aggregation is evi- 
dently reflected in the size of the drag resistance produced in turbulent flow. 

NOTATION 

g, velocity gradient, sec-1; [~], characteristic viscosity of solution, dl/g; M, molec- 
ular weight of polymer; A, half-width of scattered-light spectrum, Hz; vo, frequency of in- 
cident radiation, Hz; D, diffusion coefficient of Brownian particles, cm2/sec; k, Boltzmann 
constant, erg/deg; T, absolute temperature, ~ ~, viscosity of solution, P; a, particle ra- 
dius, ~; d = 2kT/6~D, particle diameter, ~; K 2, Wave number; %, wavelength of radiation 
used, ~; O, scattering angle, deg; c, polymer concentration in solution, g/cm a. 
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A FINITE-DIFFERENCE METHOD FOR SOLVING INVERSE BOUNDARY-VALUE 

PROBLEMS OF HEAT CONDUCTION 

N. I. Nikitenko UDC 536.24.02 

A finite-difference search method is described for determining the temperature and 
heat flux on one boundary of the body if the temperature and heat flux on the other 
boundary are known. The results of numerical experiments, which show that the method 
has proved to be efficient, are discussed. 

Among the methods at our disposal for solving inverse boundary-value problems of heat 
conduction (IPHC) fully surveyed in [1-3] an important part is played by the variational 
methods. The latter are based on the minimization of a functional representing a discrepancy 
measured by using some norm. To solve IPHC in variational formulation one can use [3-9] the 
method of least squares, the search methods of the gradient type, or the trial-and-error 
method. 

In the present article the method of finite differences is used to solve boundary IPHC 
based on the search for a temperature function which satisfies the heat-conduction equation 
and one of the boundary conditions over the entire region under consideration, the other 
boundary condition being satisfied in a countable set of points only. 

An IPHC is considered for a plate (0 ~x ~L) described by the following system of equa- 
tions : 

co--=-- ~ , (0<x<L, ~>0), (i) 
a~ ax 

t(x, o) = re(x), (2)  

t (o, ~:) = ,  (T); (3 )  

at(o, ,) 
- ~ ( '0 .  (4) 

Ox 
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It is required to find the temperature function t(x, T) in the region 0~x~L, r > 0 as 
well as the heat flux on the boundary x = L. 

It is noted that problems of heat conduction in a plate for which one of the boundary 
conditions (3) or (4~ is replaced by the temperature at some internal point 0 < x < L are 
similarly divided into direct and inverse problems. 

For the incorrectly formulated IPHC (1)-(2) to become a direct problem of heat conduc- 
tion it is sufficient that one of the conditions at the boundary x = 0 be replaced, for ex- 
ample, (4), by giving the temperature 

t(L, ~ ) = z ~ ) .  (5)  

The s o l u t i o n  o f  ( 1 ) - ( 3 ) ,  (5) w i l l  b e  t h e  s o u g h t  s o l u t i o n  o f  ( 1 ) - ( 4 )  p r o v i d e d  a f u n c t i o n  z i s  
found such that the condition (4) is satisfied. A finite-difference pattern for finding 
such a function z is discussed below on a given set of points so that the condition (4) is 
satisfied. The same pattern can be used to determine the heat flux Q on the boundary X = L 
instead of the temperature t(L, T). However, numerical experiments have shown that under al- 
most the same conditions the finding of the temperature of the body boundary is carried out 
with a much higher accuracy as compared with that of heat flux. It is, therefore, advisable 
to find Q after one has calculated t(L, r). 

If an approximation to the function z(t) is known, then the function t(x, t) can be 
found, for example, from an explicit finite-difference pattern which on the grid x i = ih, 
i = 0, I, ..., I, I = L/h, h = const; t n = n~, n = 0, I, ..., can be represented as 

u~+ l u~_~ (6)  
u~+~= u 7 I - - 2  ~t , ~l (u~+~ + u~_~) ~ cp Ot 2h ' cph ~ ~ cph z 

i = 1, 2 . . . . .  I - - 1 ;  

u~ = ~(xi), u~+t= ~(~.+,), u7+1 =z(~n+,) .  (7) 

By s o l v i n g  ( 6 ) - ( 7 )  one  c a n  f i n d  a p p r o x i m a t e  v a l u e s  o f  t h e  h e a t - f l u x  f u n c t i o n  ~ on d i f -  
f e r e n t  temporal layers z n which correspond to the function z(T). The difference ~x(t n) -- ~ 
can be used as a discrepancy signal for subsequent improvement of the function z(T). In car- 
rying out successive approximations to determine the functions u~ it is more expedient not 
to evaluate the difference ~(T n) -- ~ but the temperature difference t(h, T n) -- u~ at the 
internal node point x = h which is close to the boundary x = 0. To determine t(h, t n) one 
can use either of the difference equations 

t (h, x~) = t (0, ~ )  + h at (0, ~ )  + 0 (h ~) = ~ (~.) + h ~  (~ )  + 0 (hD, 
ax (8) 

t(h, % ) = ~ ( % ) + h ~ 1 ( % ) +  -~ �9 a~ ~ at-~(~.) +o(hD. 

The f u n c t i o n  z ( x )  i s  f o u n d  b y  i t e r a t i n g  on s t e p s  on t h e  T a x i s .  The s t e p  A t ,  w i t h i n  w h i c h  
the function z(~) is determined, should be chosen by employing the condition that the heat 
perturbations which arise during the period At on the boundary x = L should appear suffi- 
ciently distinctly on the boundary x = 0 during the same period of time. For example, if on 
the boundaries of a uniformly heated plate an instantaneous change of temperature has taken 
place [i0] by a quantity ~t, then the temperature in the middle of the plate will change by 
0.01At for Fo = 0.06, by 0.05At for Fo = 0.i, and by 0.22At for Fo = 0.3. 

The above condition imposes a constraint on the smallest value of AT. This results in 
the inadequacy of the linear approximation of the function z(T) in the interval AT. It is 
assumed, therefore, that the temperature function Z(T) = t(L, t) is sufficiently smooth in 
the interval ~j < T < Tj + AT. The function z(T) is expanded into a Taylor series and trans- 

formed into 

z(x) z (x j )+a~(~--x  i ) + a ~ ( T - T j ) ( 1  x - - x ,  )~_a~(x ~j)2(1 ~ - - T i )  , = " - -  ' w . . . .  (9)  
A~ Ax 

The use of the expansion (9) is convenient in the sense that the value of z(T~ + Ax) at the 
right end of the interval only depends on the parameter a~. It is advisable ~o choose, the 
interval AT as a multiple of i(S + l), where S is the subscript of the coefficient a~ in the 
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last term retained in the series (9). In the evaluation of the coefficients a~, s = 0 S 1 
..., S, of the series (9) a specific point �9 = rj + pST, p = i, 2, ,.., S + i, ~ = A~/~ + i) 
of the interval [rj, Tj + AT] is associated with each of them. For example, with the coef- 
ficient a~, which to considerable degree determines the function z(~) in the interval [~, 
Tj + At], there is associated a point r = zj + Az. Each coefficient a~ is responsible f6r 
the point associated with it to have the values t(h, ~n ) and u~ virtually equal, that is, 
for 

. l ( h ,  %,)--u]~ < e ,  (i0) 

where 8 is a small value, which in our numerical experiments has usually been taken as equal 
to 10 -9 . 

Let us now assume that for some time interval [Tj-i, rj-: + AT] the function z(T) and 
the coefficients a~-:, s = 0, I, ..., S, have already been determined and that it is required 
now to find the function z(T) in the next interval [r~, Tj + AT]. The difference Tj -- Tj-i 
is chosen as either equal to 8T or to its multiple, since this ensures that the condition 
(i0) is satisfied at the left end Tj of the interval. 

The coefficients a~, s = 0, i, ..., S, are found by svccessive approximations over the 
cycles. Each cycle begins with the first approximation a~,.~ and terminates with the ap- 
proximation a j when the condition (i0) is satisfied fo~kt~e point associated with this 
coefficient, s$~ last value a~(k) of the preceding cycle is the first approximation a~(: 
for the subsequent cycle. Any subsequent approximation for the coefficient a~ is carried ) 
out only if the condition (i0) has been satisfied at the points of the interval [Tj, Tj + AT] 
which are associated with the coefficients a~, aJ, ..., a~ ,. Thus, each consecutive ap- 
proximation of the coefficient a~ indicates the start of another cycle in the evaluation of 
the coefficients a~, aJ, , a j~ If a~t~ is the value of the coefficient al in the k-th 
approximation, tNen to aetermine as(k+:) one uses the zormula 

a~k+1)= a~(k)+ [I (h,T s) --u~(k) ] 1 (ii) 
~ ( ~ )  ' 

o 

where T s is the point of the interval [Tj, Tj + AT] associated with the coefficient a~; U~(k) 
is the value of the grid function u~ on the layer Ts computed directly prior to the (k + l)-th 
approximation of the coefficient aJ; w3,., is the absolute value of the rate of change of s SLK) 
the grid function u~ with respect to the parameter a~ for the given cycle determined after 
the second approximation and remaining unchanged in the subsequent approximations: 

~ s ( 2 )  a i  - -  " 

o 

For the second approximation the rate wJI.~ was adopted as equal to the rate in the preceding 
cycle. By a suitable adoption of the f~ion u~ and by using relations similar to (8), one 
can determine the heat flux on the boundary x = L. 

Numerical experiments have shown that if one retains only the first three terms in the 
series (9), a sufficiently high accuracy is ensured for the solution of the problem (1)-(4)9 
provided the temperature does not change too rapidly at the boundary x = L. Then the coef- 
ficients a j and a~ are associated with the points Z~ + Ar and T4 + (At/2) of the interval 0 ~ ~ j 

It., r -  + AT] If the condition (i0) is satisfied for the node points z + A~ and r + (At/ - j  j �9 j - . 

2), one proceeds to the interval [TJ+:, rj+1 + AT], where Tj+I = rj + (AT/2). The c~mputa- 
tions have shown that one.usually needs 4-5 iterations on each time interval to determine 
the coefficients a~ and a~. To illustrate the investigated method, the results are given be- 
low of a numerical experiment which consisted of the following stages: 

i. The solution of the direct (not inverse) problem (1)-(3), (5) to determine the func- 
tions ~(T) and t(h, T) for the following initial data: 

t (~  0 ) =  1; t(O, T)= 1 + b ~ ;  t (L ,  ~)= exp(--bG)• 

L 
- -  , • h =  10 =O,l ;  c o =  1; ~=! i -kb4t+br  

b~=const, m =  I, 2 . . . . .  8; b~= 1+15.  

2. The perturbation of the functions ~(r), ~(r), and ~(x) which describe the heat- 
exchange conditions on the boundaries x = 0 as well as the temperature field at the initial 
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TABLE i. Comparison with Exact Solution 

0,15 
0,45 
0,6 
0,9 
1,2 
1,5 
1,8 
2,1 
2,4 
2,7 
3 
3,3 - 

t(L, ~) 

1,413 
1,839 
1,797 
1,316 
0,7033 
0,4071 
0,5759 
1,008 
1,356 
1,394 
1,151 
0,8476 

Values of t(L, ~) obtained by solving the IPHC 

~=0; b=O 

1,414 
1,849 
1,807 
1,319 
O, 7070 
0,4111 
0,5761 
1,007 
1,358 
1,396 
1,152 
0,8487 

~=0,05; b=O 

1,425 
1,879 
1,720 
1,173 
0,5855 
0,3107 
0,3986 
0,9296 
1,271 
1,359 
1,108 
0,816 

~0,1 ; b=O 

1,4364 
1,908 
1,632 
1,027 
0;4637 
0,2856 
O, 2987 
0,8516 
1,183 
1,322 
1,065 
O, 7843 

~=b=0, 05 

1,519 
1,973 
1,745 
1,181 
0,5628 
0,256 
0,3254 
0,8579 
1,221 
l, 344 
1,130 
0,8642 

time. To perturb the function ~I(T) a pseudo-random-number generator was employed; the num- 
bers had a normal distribution with a mean relative error ~ = A~/~I = 0-0.5. The perturba- 
tion of the temperature ~(T) was carried out by adding to the function ~ a sign-changing func- 
tion At = ~b sin b6T, b = 0-0.5, be = 0-15. The function ~(x) was perturbed by adding the 
function A~ = ~(x)b7 sin bBx, b7 = 0-0.15, b8 = 0-i00 to @(x). 

3. The solving of the IPHC for perturbed data. To solve numerically an IPHC in the 
time interval 0 < T < 5 about 6 min of machine time is needed on the BESM-4 electronic com- 
puter. If the same grid is used when solving an inverse problem with unperturbed initial 
data, the error is virtually the same as for the direct problem. 

In Table i the results of a numerical experiment with exact or perturbed initial data 
for bl = 0; i/b2 = bs = 3; b4 = b5 = 0.i; be = 4; AT = 0.3; b7 = be = 0 are given. It can 
be seen from the table that if the exact input data are given, the difference between the 
exact temperature values and those found by solving IPHC does not exceed i%. Inexact initial 
data result in greater errors in the grid functions u~. However, this growth of error is ob- 
viously not related to the increase in the computation error; this is confirmed indirectly 
by the calculations carried out for different rules used for modifying the functions t(L, T) 
and % = %(t). By modifying the error of the initial data the mean error in determining the 
function t(L, T) via the solution of IPHC changes roughly proportionally. If the mean rela- 
tive error in finding t(L, ~) related to the initial temperature t(0, 0) is SL, then in solv- 
ing the IPHC with the time interval AT = 0.3 the ratios of the errors SL/~ and ~L/b are ap- 
proximately 1.3 and 0.85. For AT = 0.6 the ratios are ~L/~0.8 and SL/b~0.9. 

An error in the given initial starting data for @(x) has a pronounced effect on the tem- 
perature function only for relatively small values of Fo < 0.5, the error decreasing with the 
growth of ba. The varying of b8 between i and i00 when b7 = 0.1, 6 = 0, b = 0 results in 
the reduction of the maximal error in the determination of the temperature t(L, T) for r = 
A~/2 from 11% to 6%. 

The above results demonstrate that the described finite-difference pattern for solving 
IPHC enables one to find the unknown boundary conditions with an error which remains close 
to the error in the initial data. 
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